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Abstract: Hintikka’s theorem relates what is impossible to what is forbidden. 

It provides that if something is impossible, that cannot be permitted. There 

are logical demonstrations of the theorem. Those demonstrations follow 

requirements of classical, modal, and deontic logics. However, there are also 

accounts based on psychological theories trying to explain why people’s 

tendency should be to reject it. I will attempt to account for the probable 

rejection of the theorem by people too. But my explanation will resort to Non-

Axiomatic Logic. I will argue that, from the latter logic, linking possibility 

and prohibition is preferable to linking impossibility and prohibition. So, 

Hintikka’s theorem does not hold in Non-Axiomatic Logic. 

Keywords: Hintikka’s theorem, impossibility, Non-Axomatic Logic, 
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Introduction 

Hintikka’s theorem is well-known. It provides that if something cannot be 

the case, that is forbidden. It is often expressed as follows: 

 

(1) x (¬x  ¬Px) 

 

Other ways to express the theorem are to be found in the literature (see, 

e.g., (12) in Øhrstrøm, Zeller, & Sandborg-Petersen, 2012, or (HT) in López-

Astorga, 2017). (1) is a formula in first-order predicate calculus. ‘’ 

represents the universal quantifier, ‘¬’ is the negation symbol, ‘’ stands for 

the modal operator of possibility, ‘’ denotes the material conditional, and 

‘P’ symbolizes the deontic operator of permission. 

 
Acknowledgments 

Project ANID FONDECYT Regular Nº 1240010, “Modus Tollendo Tollens y 

condicionales de obligación: Un análisis de los efectos facilitadores del criterio 

estoico.” 

1 Institute of Humanistic Studies, Research Center on Cognitive Sciences, 

University of Talca, Talca Campus (Chile).  

ORCID ID: https://orcid.org/0000-0002-6004-0587 

https://orcid.org/0000-0002-6004-0587


184 | Miguel LÓPEZ-ASTORGA 

The theorem is counterintuitive and accordingly hard to accept. One might 

ask “…why should what is impossible also be forbidden? What is the point 

in not permitting the impossible?” (Øhrstrøm et al., 2012, p. 451). We have 

logic demonstrations of it (see, e.g., Prior, 2012, and the analysis of the latter 

paper in Øhrstrøm et al., 2012). Those demonstrations respect the technical 

meanings of ‘possibility’ in modal logic and ‘permission’ in deontic logic. 

But we can also find works trying to explain the reasons why individuals’ 

general tendency should be not to admit Hintikka’s theorem. To do that, 

for example, a contemporary cognitive theory was considered. That theory 

is the theory of mental models (e.g., Johnson-Laird, 2023; Jonson-Laird, 

Byrne, & Khemlani, 2024). Based on this theory, people build mental 

representations when processing sentences. Given a sentence such as (1) 

expressed in natural language, those mental representations can prevent 

from accepting Hintikka’s theorem (López-Astorga, 2017). 

 

My purpose here is to attempt to show that in Non-Axiomatic Logic (e.g., 

Wang, 2013, 2023. From now on, I will use ‘NAL’ to refer to the latter logic; 

it is the usual abbreviation to name it) the theorem does not hold. NAL is 

the logic from which NARS (Non-Axiomatic Reasoning System; see also, 

e.g., Wang, 2006), that is, a computer program, comes. NARS is not 

intended to work as the human mind, but it does try to make inferences in 

a similar manner to people (e.g., Wang, 2013). I will not review whether 

NARS makes inferences in that way. I will only propose that its logical 

system, that is, NAL, does not allow accepting (1). My point will be just 

that, in this case, NAL does appear to work in a way akin to our mind. 

 

The present paper will be divided into two sections. In the first one, I will 

describe the components NAL seems to need to deal with sentences such as 

(1). In the second section, I will present my account of the reasons why 

sentences such as (1) should be rejected in NAL. 

 

A brief description of NAL 

The statements in NAL are ‘inheritance statements’ linking subjects and 

predicates (e.g., Wang, 2013). A typical inheritance statement in NAL is (2). 

 

(2) “S → P f, c” (Wang, 2013, p. 40; Definition 3.8). 
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In (2), S denotes the subject of the inheritance statement. Being the subject 

means being in a set: in the extension of the predicate, which is P in (2). In 

turn, P is also an element in a set: the intension of S. Thus, what copula ‘→’ 

in (2) provides is “…that S is in the extension of P and P is in the intension 

of S” (Wang, 2013, p. 40; Definition 3.8; italics in text). This is important 

because, as indicated in most works explaining NAL, those are not the 

habitual meanings for ‘extension’ and ‘intension’ in logic. While ‘→’ has 

isomorphic properties with ‘’ (e.g., Wang, 2013; Definitions 9.2 and 9.3), 

what (2) establishes is what is expressed in (3). 

 

(3) “(S → P)  (SE  PE)  (PI  SI)” (Wang, 2013, p. 20; Theorem 2.4). 

 

In (3), ‘’ represents biconditional relation as understood in first-order 

predicate calculus, XE stands for the extension of X, and XI denotes the 

intension of X. 

 

Regarding f, c, it is the truth value of the statement. The first component, f, 

is ‘frequency’. It is calculated by means of the formulae in (4). 

 

(4) “f = w+/w” (Wang, 2013, p. 29; Definition 3.3); “w+ = |SE  PE|+|PI  

SI|” (Wang, 2013, p. 28; Definition 3.2); “w = |SE|+|PI|” (Wang, 

2013, p. 28; Definition 3.2). 

 

As it can be inferred from (4), w+ refers to the ‘positive evidence’ of the 

statement, and w stands for the ‘total evidence’ of that very statement. 

 

As far as c in (2) is concerned, it is the ‘confidence’ of the statement. NAL 

also has a formula to calculate it: 

 

(5) “c = w/(w + k)” (Wang, 2013, p. 29; Definition 3.3). 

 

The role of k in (5) is that of a constant. In NAL, it is habitual to consider it 

to be equal to 1 (for reasons for that, see, e.g., Wang, 2013). 

 

Components f and c are important in NAL in several senses. For the present 

paper, one of the reasons why they are relevant is that one might think that 

f and c play the role of quantifiers in other logics. NAL works with a basic 

assumption: the Assumption of Insufficient Knowledge and Resources 
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(AIKR; in addition to Wang, 2013, this assumption is addressed in detail in, 

e.g., Wang, 2011). The assumption implies that there are always doubts 

about the evidence reviewed. It is always possible to get new evidence, 

which can change the current values of f and c. From this point of view, we 

can think that if we use f and c, quantifiers such as the existential and the 

universal quantifiers in first-order predicate calculus become irrelevant 

(e.g., Wang, 2023). 

 

On the other hand, there are many inference rules in NAL. The system 

enables to make inferences such as deductions, inductions, abductions, 

revisions, etc. (e.g., Wang, 2013; for a brief explanation of some of the rules, 

see, in addition, Wang, 2023). However, the rule that is interesting here is 

the ‘choice rule’. Given a question such as ‘? → P’, that is, a question about 

the most appropriate subject for a predicate, NAL also has a formula to 

determinate what option to choose. That formula allows calculating e, that 

is, the ‘expectation value’. It is the formula in (6). 

 

(6) “e = (w+ + k/2)/(w + k)”, or “e = c x (f – ½) + ½” (Wang, 2013, p. 48; 

Table 4.2). 

 

The alternative with highest e will be the alternative to select. 

 

All this can also be shown by means of an example. Taking AIKR into 

account, let us suppose a fictional scenario such as the following. 

 

The system knows ten people. eight of those people are Asian, and two of 

them are European. Out of the eight Asian people, five are Chinese and 

three are Japanese. One European person is German, and the other one is 

Portuguese. This information enables to build inheritance statements (7) to 

(16). 

 

(7) Asian → Person (1, 0.89) 

 

This is because w = 8 and w+ = 8 for (7). 

 

(8) European → Person (1, 0.67) 

 

This is because w = 2 and w+ = 2 for (8). 
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(9) Chinese → Person (1, 0.83) 

 

This is because w = 5 and w+ = 5 for (9). 

 

(10) Japanese → Person (1, 0.75) 

 

This is because w = 3 and w+ = 3 for (10). 

 

(11) German → Person (1, 0.5) 

 

This is because w = 1 and w+ = 1 for (11). 

 

(12) Portuguese → Person (1, 0.5) 

 

This is because w = 1 and w+ = 1 for (12). 

 

(13) Chinese → Asian (1, 0.86) 

 

This is because w = 6 and w+ = 6 for (13) (if PersonI is the intension of Person, 

Chinese  PersonI, and Asian  PersonI). 

 

(14) Japanese → Asian (1, 0.8) 

 

This is because w = 4 and w+ = 4 for (14) (Japanese  PersonI, and Asian  

PersonI). 

 

(15) German → European (1, 0.67) 

 

This is because w = 2 and w+ = 2 for (15) (German  PersonI, and 

European  PersonI). 

 

(16) Portuguese → European (1, 0.67) 

 

This is because w = 2 and w+ = 2 for (16) (Portuguese  PersonI, and 

European  PersonI). 
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With these data, NAL can respond to questions such as ‘? → Person’, ‘? → 

Asian’, or ‘? → European’. In the case of the first question, that is, ‘? → 

Person’, we need to calculate e for inheritance statements (7) to (12). Let e(7), 

e(8), e(9), e(10), e(11), and e(12) be the expectation values of, respectively, (7), 

(8), (9), (10), (11), and (12). (6) allows calculating them. 

 

-e(7) = 0.94 

 -e(8) = 0.83 

 -e(9) = 0.92 

 -e(10) = 0.88 

 -e(11) = 0.75 

 -e(12) = 0.75 

 

Because the highest value is e(7), the answer to ‘? → Person’ would be Asian. 

 

If the question were ‘? → Asian’, we would require the values of e for (13) 

and (14). Let e(13) and e(14) be the expectation values of, respectively, (13) 

and (14). Then, 

 

 -e(13) = 0.93 

 -e(14) = 0.9 

 

Since e(13) > e(14), the response would be Chinese in this case. 

 

Finally, the values of e necessary to respond to ‘? → European’ would be 

those of (15) and (16). Let e(15) and e(16) be the expectation values of, 

respectively, (15) and (16). (6) leads us to: 

 

 -e(15) = 0.83 

 -e(16) = 0.83 

 

In this situation, the system could not choose between German and 

Portuguese, as the expectation value is the same for both (15) and (16). 

Beyond the way NAL can solve difficulties such as this one, what is 

important now is that the components of this logic described above can 

show that statements akin to (1) would not be prioritized in it. The next 

section addresses this point. 
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Hintikka’s theorem and NAL 

To consider (1) from NAL, the first thing to do is to translate a formula 

such as (1), which is a formula in first-order predicate calculus including 

operators from modal and deontic logics, into an inheritance statement 

such as those of NAL. The universal quantifier is not a problem. As said, if 

truth values such as f and c are included, no quantifier should be used. We 

are never sure about evidence in NAL. So, we cannot state definitively, for 

example, that all elements in a set are a subset of another set, or that an 

intersection between two sets exists. In NAL, the values obtained with its 

formulae are always variable. Thus, (1) can be transformed into (17). 

 

(17) ¬x  ¬Px fx, cx 

 

This does not suffice. The material conditional is only used in NAL at the 

meta-level to describe it (e.g., Wang, 2013). Hence, ‘’ needs to be replaced 

by ‘→’. As indicated, there is an isomorphism between the material 

conditional in classical logic and the inheritance copula in NAL (e.g., Wang, 

2013; Definitions 9.2 and 9.3). Besides, transformations of conditionals in 

classical logic into inheritance statements in NAL are to be found in the 

literature. For example, there are works in which that was done to apply 

NAL to philosophical frameworks (see, e.g., López-Astorga, 2024, where 

NAL is combined with the testability process Carnap, 1936, 1937, 

proposed). So, one might think that changing (17) for (18) is justified. 

 

(18) ¬x → ¬Px fx, cx 

 

The problems remaining are those caused by modal operator ‘’ and 

deontic operator ‘P’. NAL can remove those problems in several ways. 

Following works such as Wang (2013), one of these ways is to deem them 

as terms with extension and intension. ‘’ can refer to Possible, and ‘P’ can 

denote Permitted. Given that in (18) both terms are negated, we should 

think about terms such as Impossible and Forbidden. That allows us to come 

to (19). 

 

(19) Impossible → Forbidden fx, cx 

 

At this point, to know how (19) would be processed in NAL, we would 

have to calculate fx and cx. That does not seem to be easy. However, there 
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are other options that may not be so difficult. For instance, we can think 

about the status of (19) in NAL considering at the same time both an 

inheritance statement such as (20) 

 

(20) Possible → Forbidden fy, cy 

 

And a question such as (21). 

 

(21) ? → Forbidden 

 

According to (6), the answer to (21) could be neither Possible, by virtue of 

(20), nor Impossible, by virtue of (19). It could be another term different from 

both the system knows. But we can argue that NAL will always prefer 

Possible, or (20), over Impossible, or (19), in this case. If this is shown, we will 

be able to claim that the inheritance statements similar to what (1) 

expresses have low frequency values in NAL. 

As indicated above, “…why should what is impossible also be 

forbidden? What is the point in not permitting the impossible?” (Øhrstrøm 

et al., 2012, p. 451) are valid questions. Questions such as these ones make 

sense because in real life we hardly find impossible actions that are 

forbidden. I am not saying that we cannot find impossible and forbidden 

actions. What I am saying is that it is difficult to find them. 

The opposite happens in the case of (20). Most forbidden conducts are 

possible conducts. Therefore, we can think that NAL always has evidence 

in favor of (20), no matter how little information it has. Let w19+ and w20+ be 

the positive evidence in favor of, respectively, (19) and (20). It is obvious 

that (22) holds. 

 

(22) w20+ > 0 

 

But (23) is not obvious. 

 

(23) w19+ > 0 

 

What does be also evident is that w19+ < w20+. 
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Let w19 and w20 be the total evidence for, respectively, (19) and (20). In a 

fictional scenario in which the amount of evidence for (19) and (20) is the 

same, that is, in a fictional scenario in which w19 = w20, 24 holds. 

 

(24) w19/(w19 + k) = w20/(w20 + k) = cx = cy 

 

Still, all that has been said leads to (25). 

 

(25) (w19+ + k/2)/(w19 + k) < (w20+ + k/2)/(w20 + k) 

 

Although w19 = w20, given that w19+ < w20+, we must admit that fx < fy. 

Accordingly, 

 

(26) cx x (fx – ½) + ½ <  cy x (fy – ½) + ½ 

 

Let e(19) and e(20) be the expectation values of, respectively, (19) and (20). If 

(25) and (26) are the case, then (27) is the case. 

 

(27) e(19) < e(20) 

 

But (27) leads to respond to (21) with Possible. As indicated, depending on 

the data the system has, the answer can be a term different from both 

Possible and Impossible. However, what appears to be undeniable is that 

Possible is always preferable over Impossible as a response to (21). 

 

Conclusions 

Hintikka’s theorem has been demonstrated following general technical 

requirements of classical, modal, and deontic logics. In the literature, we 

can find explanations based on psychological theories accounting for why, 

despite that, people can tend not to accept the theorem. 

In this paper, I have tried to do the same within NAL framework. 

What the theorem provides can be expressed as an inheritance statement in 

NAL. Quantifiers are not necessary in the latter logic; it includes truth 

values such as f and c that seem to eliminate their necessity. On the other 

hand, the isomorphism between the material conditional in classical logic 

and the copula in inheritance statements in NAL also helps convert what 

the theorem indicates into an inheritance statement. In addition, the 
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operators of possibility and permission, from, respectively, modal logic and 

deontic logic, can be understood as terms in NAL. 

From this point on, we can calculate the expectation value for both a 

statement indicating that what is impossible is forbidden and a statement 

establishing that what is possible is forbidden. Given that it is evident that 

the second statement will have more positive evidence than the first one, if 

the two statements have the same confidence value, the second statement 

will have a higher expectation value. 

By virtue of the choice rule, the higher expectation value means that 

the statement linking what is possible to what is forbidden should be 

selected before the statement relating what is impossible to what is 

forbidden. Therefore, in NAL, if we ask about the subject of the predicate 

Forbidden, the tendency will be to prioritize Possible. One might think that 

this is more like the way people can understand the theorem. 

NAL has much more resources and components than those described 

in the present paper. There are other manners to address Hintikka’s 

theorem from NAL. Those manners might be different in terms of 

simplicity and rigor from mine here. However, they can hardly lead to 

opposite conclusions. It is difficult to accept Hintikka’s theorem in NAL. 
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